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1 Introduction

The scope of concepts and applications of holography has blossomed in recent years. Re-
alized in terms of the AdS/CFT correspondence, holography asserts that gravitational
dynamics in an asymptotically Anti de Sitter (AdS) spacetime can be mapped onto a (rel-
ativistic) conformal field theory (CFT) in one less dimension [1]. This duality conjecture
has proven to be a useful tool in understanding the behaviour of strongly interacting field
theories, whose dual description is in terms of weakly coupled gravitational dynamics in a
bulk spacetime that is asymptotically AdS.

Over the years holographic duality has been extended beyond high energy physics to
a much broader class of spacetimes and dual physical systems. Some investigations have
extended these ideas to asymptotically de Sitter [2] and asymptotically flat spacetimes [3],
where holographic renormalization has been shown to be a fruitful tool for understanding
conserved quantities and gravitational thermodynamics. More recently holography has
been qualitatively employed in improving our understanding of transport properties of QCD
quark-gluon plasmas [4] and in the construction of gravity models that are conjectured to
be dual to various systems in atomic physics and condensed matter physics. For example
holography has been shown to be applicable to a class of strongly correlated electron and
atomic systems that exhibit relativistic dispersion relations, and whose dynamics near a
critical point is well described by a relativistic CFT. The AdS/CMat correspondence is
being actively employed to study superconductivity [5], the quantum Hall effect [6], and a
number of other condensed matter systems that can be described by CFTs [7].

A key feature of interest is the scaling property

t→ λzt x→ λx (1.1)
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exhibited by fixed points governing the behaviour of various condensed matter systems.
This behaviour differs from that which arises in the conformal group

t→ λt x→ λx (1.2)

and is concretely realized in the (2+1) dimensional theory

S =
∫
dtd2x

(
φ̇2 −K(∇φ)2

)
(1.3)

known as the Lifshitz theory. The action (1.3) is invariant under the scaling relation (1.1)
with z = 2 and has been used to model quantum critical behavior in strongly correlated
electron systems [8, 9].

From a holographic perspective the conjectured dual to this system is a gravitational
theory [10] whose equations of motion yielded solutions with spacetime metrics asymptotic
to the form

ds2 = `2
(
−r2zdt2 +

dr2

r2
+ r2dx2

)
(1.4)

where the coordinates (t, r, x1, x2) are dimensionless. These obey the scaling relations

t→ λzt r → λ−1r x→ λx (1.5)

and the only length scale in the geometry is `. Metrics asymptotic to (1.4) can be generated
as solutions to the equations of motion that follow from the action

S =
∫
d4x
√
−g
(
R− 2Λ− 1

4
FµνF

µν − 1
12
HµντH

µντ − C√
−g

εµναβBµνFαβ

)
(1.6)

where εµναβ is the Levi-Civita tensor density and Fµν = ∂[µAν] and Hµντ = ∂[µBντ ] are
Abelian gauge fields that are topologically coupled with coupling constant C. The quantity
Λ is the cosmological constant. In order to obtain the asymptotic behaviour (1.4) these
constants are given by [10]

Λ = −z
2 + z + 4

2`2
2z = (C`)2 (1.7)

in terms of the length scale `.
Recently spherically symmetric solutions to the equations of motion that follow

from (1.6) were obtained for z = 2. These solutions included a discrete set of solutions
known as Lifshitz stars as well as a continuous set of black hole solutions having finite
temperature [11]. The purpose of this paper is to extend this work to the case of topo-
logical black holes, namely those whose event horizons are toroidal or of higher genus as a
consequence of identifications made in the spacetime [12].

These black holes differ considerably from one another depending on the size of the
event horizon, which is uniquely fixed in terms of their electric charge (or vice-versa).
Large black holes have thermodynamic behaviour that is essentially the same regardless
of the genus. However small black holes have markedly different genus-dependent

– 2 –



J
H
E
P
0
6
(
2
0
0
9
)
0
7
5

thermodynamic behaviour. The entropy of genus-1 black holes scales linearly with the
temperature for all values of the black hole radius. Higher genus black holes must have
a radius rh > 1/

√
5, with units defined as in eq. (1.4). As their radius decreases, so

does their charge, and as rh → 1/
√

5 these black holes approach their extremal AdS
counterparts [13] and have the same asymptotic structure. While most solutions must be
obtained numerically, it is possible to find an exact black hole solution in the higher-genus
case. This solution appears to correspond to its zero-mass AdS counterpart, though
its asymptotic behaviour is given by (1.4). Although all these results are for z = 2,
generalization to higher z should be possible.

The solutions found here differ from those with obtained from gravity duals of other
non-relativistic quantum systems [14], for which topological black hole solutions have also
recently been found [15].

2 Lifshitz asymptotics and exact solutions

The field equations that follow from the action (1.6) are

∇νFµν = − C

6
√
−g

εµναβH
ναβ (2.1)

∇τHµντ =
C

2
√
−g

εµναβF
αβ (2.2)

Gµν −
5
`2
gµν =

1
2

(
FµτF

τ
ν −

1
4
gµνF

2

)
+

1
4

(
HµστH

στ
ν − 1

6
gµνH

2

)
(2.3)

In order to solve these equations an ansatz is needed that preserves the basic symmetries
under consideration. For the metric I shall take

ds2 = `2
(
−r4f2(r)dt2 +

g2(r)dr2

r2
+ r2dΩ2

k

)
(2.4)

where

dΩ2
k =


dθ2 + sin2 θdφ2 k = +1
dθ2 + θ2dφ2 k = 0
dθ2 + sinh2 θdφ2 k = −1

(2.5)

is the metric for spatial sections at fixed (t, r) corresponding to the genus g = 0 (spherical),
g = 1 (flat/toroidal), and g ≥ 2 (hyperbolic) cases. Compact spatial sections at fixed r are
possible by making appropriate identifications in the x coordinates [16, 17].

The gauge field strengths are

Frt = −2`g(r)h(r)f(r)r Hrθφ = 2`2j(r)g(r)r


sin θ k = +1
θ k = 0
sinh θ k = −1

(2.6)

with all other components either vanishing or being given by antisymmetrization.
The field strength Fµν is that of an electric field directed radially outward, and de-

scribed by the function h(r) in an orthonormal basis. This field sources the 3-form field
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strength Hµντ and vice-versa. This latter field is therefore electrically charged and corre-
sponds to a charged fluid whose density is given by j(r) in an orthonormal basis [11].

The field equations (2.1)–(2.3) reduce to the system

r
df

dr
= −5

2
f(r) +

1
2
f(r)g(r)2

(
5 +

k

r2
+ j(r)2 − h(r)2

)
(2.7)

r
dg

dr
=

3
2
g(r)− 1

2
g(r)3

(
5 +

k

r2
− j(r)2 − h(r)2

)
(2.8)

r
dj

dr
= 2g(r)h(r) +

1
2
j(r)− 1

2
j(r)g(r)2

(
5 +

k

r2
+ j(r)2 − h(r)2

)
(2.9)

r
dh

dr
= 2g(r)j(r)− 2h(r) (2.10)

which is a system of ODEs that can be solved by standard numerical methods.
An exact solution to the above equations is

f(r) = j(r) =

√
1 +

k`2

2r2
g(r) =

1√
1 + k`2

2r2

h(r) = 1 (2.11)

yielding the metric

ds2 =

−r2
`2

(
r2

`2
+
k

2

)
dt2 +

dr2(
r2

`2
+ k

2

) + r2dΩ2
k

 (2.12)

where I have rescaled r → r/` and t→ t/`. This solution is valid only for z = 2 and does
not straightforwardly generalize to other values of z > 1.

The spacetime described by (2.12) is singular at r = 0 for all values of k. For k = 0
it becomes the metric (1.4): all its curvature scalars are finite but it is not geodesically
complete. This kind of metric can be regarded as physically reasonable if there exists a
regular black hole solution that approaches it in some extremal limit [10, 18]. For k 6= 0 the
Kretschmann scalar diverges at r = 0. If k = 1 this is a naked singularity, but if k = −1 it
is cloaked by an event horizon. Hence the metric

ds2 =

−r2
`2

(
r2

`2
− 1

2

)
dt2 +

dr2(
r2

`2
− 1

2

) + r2(dθ2 + sinh2(θ)dφ2)

 (2.13)

is an exact black hole solution to the field equations provided h(r) = 1 and j(r) =
√

1− `2

2r2
.

The event horizon is located at r = `/
√

2. This metric would appear to be the analogue of
a zero-mass topological AdS black hole [13], though it should be noted that defining mass
and other conserved charges in this theory remains an open question at this stage.

The asymptotic behaviour of the system (2.7)–(2.10) is the same for all values of k, and
so its analysis is identical to the given for the k = 1 case [11]. Equations (2.8)–(2.10) form
a closed system for the set {g(r), j(r), h(r)} and can be considered separately; once they
are solved then eq. (2.7) can be solved for f(r). Linearization of these equations indicates
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that there is a zero mode at large r. However this mode must have zero amplitude if the
system is to approach the Lifshitz metric (1.4). This can only happen if the initial values
of the functions are appropriately adjusted (fine-tuned) to ensure that each function in the
set {g(r), j(r), h(r)} approaches unity.

3 Series and numerical black hole solutions

The system (2.7)–(2.10) can be solved both for large r and near the event horizon using
series expansions. For large r the solution is

f = 1 +
k

4r2
− k2

32r4
+
(
k3

128
− khL

12

)
1
r6

+
(

13k2hL
384

− 5k4

2048
+

15h4
L

64

)
1
r8

g = 1− k
4r2

+
(
hL
2

+
3k2

32

)
1
r4
−
(

5k3

128
+

3khL
8

)
1
r6

+
(

7k2hL
32

+
35k4

2048
+

3h4
L

32

)
1
r8

j = 1 +
k

4r2
−
(

3hL
2

+
k2

32

)
1
r4

+
(
k3

128
+

7khL
8

)
1
r6
−
(

13k2hL
32

+
5k4

2048
+

21h4
L

32

)
1
r8

h = 1 +
hL
r4
− khL

2r6
+
(

7k2

32
hL +

7
16
h2
L

)
1
r8

(3.1)

and is governed by one constant hL, that parametrizes how rapidly the electric field falls
off at large r. For k = 0 the falloff is very rapid, particularly for f(r), whose subleading
term is proportional to 1/r8.

It is also possible to solve the equations near the event horizon. Under the assumption
that the black hole is not extremal, the metric functions gtt and grr must respectively have
a simple zero and a simple pole at the horizon r = r0. The electric field h(r0) = h0 is
assumed to be finite at r = r0. Unlike the situation for the (AdS)-Reissner-Nordstrom
metric, these values are not independent because of the presence of the charged fluid (the
3-form field strength). For a static configuration the gravitational pull of the black hole
must balance the self-repulsion of the fluid, whose value must also vanish at the horizon if
the electric field is finite there.

Writing r = r0 + x, the resultant near-horizon series solution is

f = f0

√
x
(
1 + f1x+ f2x

2 + · · ·
)

g =
g0√
x

(
1 + g1x+ g2x

2 + · · ·
)

j = j0
√
x
(
1 + j1x+ j2x

2 + · · ·
)

h = h0

(
1 + h1x+ h2x

2 + · · ·
)

(3.2)

where

f1 = −5k2 − 52r40h
2
0 + 45kr20 − 11kr20h

2
0 + 6r40h

4
0 + 100r40

2(r0(k + 5r20 − r20h2
0)2

g0 =
r
3/2
0√

(k + 5r20 − r20h2
0)

– 5 –
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Figure 1. h0 vs. r0 on a log-log scale for spherical (k = 1, solid), toroidal (k = 0, dot) and higher-
genus (k = −1, dot-dash) black holes. The limit given in eq. (3.4) for k = 1 is the dashed line. The
intersection point of the k = −1 curve with the r0 axis corresponds to the exact solution (2.13).

g1 =
3k2 − 24r40h

2
0 + 25kr20 − 7kr20h

2
0 + 4r40h

4
0 + 50r40

2r0(k + 5r20 − r20h2
0)2

j0 = 2
√
r0h0√

k + 5r20 − r20h2
0

j1 = −h0(k2 + 11kr20 − kr20h2
0 − 8r40h

2
0 + 30r40)

2r0(k + 5r20 − r20h2
0)2

h1 = 2
(k + 3r20 − r20h2

0)
(k + 5r20 − r20h2

0)r0
(3.3)

with the remaining coefficients determined in terms of h0 and r0.
From (3.3) it clear that the constraint

(5− h2
0)r20 + k > 0 (3.4)

must be respected so that the solutions are real. For k = 0, 1 this imposes an upper bound
on |h0|, whereas for k = −1 it imposes a lower bound of r0 > 1/

√
5 on the size of the

black hole.
Further progress can only be made numerically. Since the equations are all first order

ODEs, the shooting method can be used to solve them. Choosing some value of r0 for
the black hole, one can then choose a value for h0 and then find the initial values of the
functions g(r), h(r), and j(r) from the series solutions for some value of r > r0. This

– 6 –
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Figure 2. A plot of the metric and gauge functions for r0 = 20 for all three values of k. The three
curves overlap within the plotting resolution.

becomes the initial data for the system (2.8)–(2.10), which can then be numerically solved.
The value of h(r) can be computed for r = R � r0; should |h(R) − 1| > ε, where ε � 1
is some level of tolerance, then the process is repeated, with value of h0 adjusted, until
|h(R)−1| < ε. This then gives a black hole solution of radius r0 with asymptotic behaviour
given by the metric (1.4).

In practice it proves best to begin with large black holes, for which the value of h0

remains constant. Numerically I find that setting h0 = 1.374 yields valid solutions for
r0 > 10 for all values of k. For k = 0 this value of h0 yields black hole solutions for all
values of r0 that were computationally viable. For r0 < 10 it is necessary to systematically
adjust the value of h0 upward for k = 1 and downward for k = −1.

Figure 1 illustrates the behaviour of h0 as a function of r0 on a log-log plot. For
k = 1, the value of h0 asymptotes to the upper bound given in (3.4). The extremal
limit appears to occur when the bound is saturated as r0 → 0; it does not appear to be
possible to find series solutions for r0 > 0 in the extremal case. For k = −1 the value of
h0 approaches zero as r0 → 1/

√
5. In this case the limit is evidently that of an extremal

topological AdS black hole with genus g > 2. For the exact solution (2.13), r0 = 1/
√

2
and h0 = h(r) = 1, corresponding to the intersection point of the k = −1 curve with the
r0 axis in figure 1. The exact solution provides a useful check on the numerical solution,
and it can be verified that the solutions for the metric and gauge functions are identical
to within limits of tolerance (taken to be 10−4).

The metric functions and gauge field strengths are essentially indistinguishable
amongst the different values of k for r0 > 10, as an example illustrates in figure 2. Small
differences begin to appear for intermediate values of r0, as shown in figure 3, and for small
r0 the distinctions are quite significant, as depicted in figures 4 and 5.
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Figure 3. A plot of the metric and gauge functions for r0 = 1.6 for k = 1 (solid), k = 0 (dot), and
k = −1 (dot-dash).

Figure 4. A plot of the metric functions for r0 = 0.4 for k = 1 (solid), k = 0 (dot), and k = −1
(dot-dash).

4 Black hole thermodynamics

The temperature of Lifshitz black holes is easily evaluated using standard Wick-rotation
methods, yielding the result

T =
f0r

3
0

4πg0
=
f0r

3/2
0

√
−h2

0r
2
0 + k + 5r20

4π
(4.1)

– 8 –
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Figure 5. A plot of the gauge functions for r0 = 0.4 for k = 1 (solid), k = 0 (dot), and k = −1
(dot-dash).

Figure 6. Dependence of the black hole temperature as a function of r0 for k = 1 (solid), k = 0
(dot), and k = −1 (dot-dash).

where f0 is dependent upon r0 so that the metric has the asymptotic behaviour given
in equation (1.4).

The temperature for any genus is therefore dependent only on the size r0 of the black
hole, and its behaviour is illustrated in figure 6. For large r0, spherical black holes (k = 1)
are hotter than planar/toroidal black holes (k = 0), which are in turn hotter than the
k = −1 higher genus class. The planar/toroidal holes have a temperature dependence that

– 9 –
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Figure 7. Dependence of the black hole entropy as a function of temperature for k = 1 (solid),
k = 0 (dot), and k = −1 (dot-dash).

increases quadratically with the black hole radius; numerically I find that

Tk=0 = 10−0.57r20 = .276r20 (4.2)

a behaviour that also accurately describes the k = ±1 cases for r0 > 0.6. This behaviour
is consistent with the near-horizon expansion that indicates g0 ∼ 1/f0 ∼

√
r0 for large r0.

For small r0 the behaviour is strikingly different for each case. Higher genus black holes
approach zero temperature at an exponentially rapid rate as r0 → 1/

√
5. For r0 < 0.1 the

planar black holes become hotter than their k = 0 counterparts. The temperature of the
k = 1 black holes falls off very rapidly as r0 decreases, though less so than the k = −1 case.

The entropy of the black holes is given by 1
4 of the area, so S = πr20 for all cases

(assuming appropriate identifications and volume normalizations for k = 0,−1). Hence
eq. (4.2) gives

S = 11.4T (4.3)

a relationship that is valid for all T for the k = 0 case and that holds for large T for
k = ±1 [11]. The behaviour of the entropy as a function of temperature is given in figure 7.

For the exact solution (2.13), the temperature and entropy are

T =
1

4π
S =

π

2
(4.4)

which can be computed directly from the exact solution or from the series solution (3.3)
for which f0 = 1/g0 = 23/4 and r0 = 1/

√
2. These values are commensurate with those in

figure 7, though they are considerably beyond the range for which eq. (4.2) applies.

– 10 –
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5 Wilson loops and the boundary dual theory

Since in (2+1) dimensions one can write ∇2φ = ~∇× ~E, where Ej = εjk∇kφ, the boundary
theory (1.3) can be regarded as a gauge theory in (2+1) dimensions (albeit one with an
unusual action) with a dimensionless coupling constant [9, 11]. As in the k = 0 spherical
case, one can introduce Wilson loops by joining charged particles on the boundary that
are connected together in the bulk via a string. The Euclidean action of this string for a
rectangular Wilson loop is the same for all values of k and is given by [11, 19]

S =
1

2πα′

∫
dσdτ

√
det [gAB∂µXA∂νXB] =

∆`2

2πα′

∫
dθ

√
f2r2z+2+f2g2r2z−2

(
dr

dθ

)2

(5.1)
taking σ = θ and iτ = t in the static gauge, with Euclidean time interval ∆.

Extremizing the action yields a constant of the motion

f2r2z+2√
f2r2z+2 + f2g2r2z−2

(
dr
dθ

)2 = f(rm)rz+1
m (5.2)

from which can be computed the boundary length

L =
∫
dθ = 2

∫ ∞
rm

dr

r2
g√(

f
fm

)2 (
r
rm

)2z+2
− 1

(5.3)

and the regularized potential energy between the two particles

V =
S

∆`
=

`

2πα′

2
∫ ∞
rm

dr
rz−1fg√

1−
(
fm

f

)2 (
rm
r

)2z+2

− 2
∫ ∞
r0

drrz−1fg

 (5.4)

where fm = f(rm) and rm > r0 is the location of the midpoint of the string.
For small rm the separation L between the particles grows, reaching a maximum and

then decreasing as rm gets larger. The energy between the particles is negative for suffi-
ciently small rm, and will vanish at some particular value of rm (or L). Beyond this point
the energy for a single string joining the pair is positive. The energy of the configuration is
therefore minimized (to zero) by two (non-interacting) strings stretching from each particle
down to the horizon, screening the gauge interaction between the particles. The point at
which this takes place will depend on r0, and hence the temperature.

For large black holes the metric functions f and g are nearly indistinguishable for all
values of k, and so the analysis of screening behaviour for the spherical k = 1 case [11] holds
for the other values of k as well. For small black holes the value of rm at which the potential
vanishes is numerically almost the same, as shown in figure 8. However the length between
the particles differs considerably as a function of rm (see figure 9), and so the critical value
L = Lc at which screening occurs will differ considerably for different values of k.

For the exact solution (2.13) it is straightforward to carry out the integration in equa-
tions (5.3) and (5.4), though the results cannot be obtained as an explicit function of rm

– 11 –



J
H
E
P
0
6
(
2
0
0
9
)
0
7
5

Figure 8. Dependence of the boundary length L between two particles as a function of the string
midpoint rm for k = 1 (solid), k = 0 (dot), and k = −1 (dot-dash), where r0 = 0.5. These curves
rapidly become indistinguishable as r0 increases.

Figure 9. Dependence of the potential V between two particles as a function of the string midpoint
rm for k = 1 (solid), k = 0 (dot), and k = −1 (dot-dash), where r0 = 0.5. The right-hand diagram
is a close-up of the left. The critical values of rm for each k are within 0.04% of each other. The
intersection points (and the behaviour of V ) rapidly become indistinguishable as r0 increases.

but must instead be obtained numerically. It is straightforward to check that the inte-
grands (and hence the integrals) in equations (5.3) and (5.4) are identical within limits of

– 12 –
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tolerance for the exact solution (2.13) and its numerical counterpart with r0 = 1/
√

2. The
behaviour is not too different for this case as compared to its k = 0, 1 counterparts, and so
the results are not plotted here.

6 Conclusions

In this paper I have expanded the class of black holes that provide a dual description of a
finite temperature Lifshitz system to include black holes of any topology. The gravitational
theory can at least be regarded as a phenomenological description of the 2+1 dimensional
physics described by the Lifshitz theory. Whether or not this duality can be fully incor-
porated into string theory, thereby extending the AdS/CFT correspondence, is an open
question.

Thermodynamic properties of these black holes are quite similar for large black holes,
but differ considerably for small black holes. The genus 0 and 1 cases approach extremality
as the black hole size approaches zero. However the higher-genus black holes approach
extremality at r0 = 1/

√
5, at which point the gauge fields vanish and a negative mass

topological AdS black hole is attained.
The screening behaviour of the dual theory is essentially the same for any genus for

large black holes. For small black holes the onset of screening is attained at nearly the
same value of the midpoint rm of the string joining two charged particles on the boundary
regardless of the genus; however this yields very different values of the critical length L

between the particles on the boundary due to a sensitive dependence of this quantity on rm.
A number of interesting questions remain, including higher-dimensional generaliza-

tions, a more complete study of the z 6= 2 cases (for recent work on the z = 3/2 case
and its connection to string theory, see [20]), developing holographic renormalization for
this class of theories, and understanding better the relationship with non-relativistic, non-
abelian gauge theories having quantum critical behavior at z = 2 [21].
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